Hall	Tick	et Nu	imbe	r:				
								Г

Code No. : 22111

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. II Year II-Semester Main & Backlog Examinations, May-2017

Mathematics-IV (CSE, ECE & Mech. Engg.)

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

1. Find $L(e^{2t}cos^2 t)$

Time: 3 hours

- 2. Find $L^{-1}\left(\frac{1}{s(s^2+a^2)}\right)$
- 3. Given $F(e^{-x^2}) = \sqrt{\pi} e^{-\frac{x^2}{4}}$, find the Fourier transform of $e^{-\frac{x^2}{3}}$
- 4. Find the Fourier transform of $f(x) = \begin{cases} 1 & for \ |x| < 1 \\ 0 & for \ |x| > 1 \end{cases}$
- 5. Find $Z(e^{-an}n)$
- 6. Find $Z^{-1}\left(\frac{5z}{(2-z)(3z-1)}\right)$

7. Show that \bar{z} is not analytic at any point in the Z- plane.

- 8. Evaluate using Cauchy's integral formula $\oint_c \frac{z^3 2z + 1}{(z-1)^2} dz$ where C: |z| = 2
- 9. Obtain the Taylor's series expansion of $\cos z$ about $z = \frac{\pi}{2}$

10. Classify the singular points of $f(z) = \frac{z^2 - 1}{(z-1)^3}$

i) 1 < |z| < 3 ii) |z| > 3

Part-B $(5 \times 10 = 50 \text{ Marks})$

11. a)	Using Convolution theorem, find $L^{-1}\left(\frac{s}{(s^2+a^2)^2}\right)$	[5]
b)	Solve using Laplace transforms $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} - 3y = \sin t$ given $y = \frac{dy}{dt} = 0$ at $t = 0$	[5]
12. a)	Solve the integral equation $\int_0^\infty f(x) \cos \alpha x dx = e^{-\alpha}$	[5]
b)	Find the Fourier Cosine transform of e^{-ax}	[5]
13. a)	State and prove Convolution theorem on Z-transform.	[5]
b)	Solve the difference equation $u_{n+2} + 3u_{n+1} - 4u_n = 0$ given $u_0 = 3$, $u_1 = -2$ using Z-transform.	[5]
14. a)	Find the analytic function $f(z) = u + iv$, if $2u + v = e^{x}(\cos y - \sin y)$	[6]
b)	Find the Laurent series expansion of $f(z) = \frac{1}{(z-1)(z+3)}$ for	[4]

	::2:: Code No. :	22111
15. a)) State and prove Cauchy's theorem on Residues .	[5]
b)) Evaluate $\int_0^{2\pi} \frac{d\theta}{2+\sin\theta}$ using residue theorem	[5]
16. a)	Find $L\left(\frac{e^{-t}\sin t}{t}\right)$	[4]
b)) State and prove Convolution theorem of Fourier transform.	[6]
17. Aı	nswer any two of the following:	
a)	Determine u_0 , u_1 and u_2 of the sequence $\{u_n\}$ where $Z\{u_n\} = U(z) = \frac{(z-1)^2(z+2)}{(z+3)(z+5)^2}$	[5]

185

- b) Find the imaginary part of the analytic function whose real part is $y + e^x \cos y$ [5]
- c) Find the Bilinear transformation which maps the points $z = \infty, i, 0$ to w = -1, -i, 1 [5]
